68. DFF with Synchronous Reset

Loading...

Testbench Code

`timescale 1ns/1ps

module tb_dff_sync_reset;
    // 1) Inputs
    reg CLK, RST, D;
    // 2) Outputs
    wire Q;
    // 3) Expected outputs (prefixed "expected_")
    reg  expected_Q;
    // 4) Mismatch (HIGH when outputs != expected)
    wire mismatch;

    // DUT
    dff_sync_reset dut(.CLK(CLK), .RST(RST), .D(D), .Q(Q));

    // Scoreboard: same sampling as DUT
    always @(posedge CLK) begin
        if (RST) expected_Q <= 1'b0;
        else     expected_Q <= D;
    end

    // 4-state compare
    assign mismatch = (Q !== expected_Q);

    // Counters / limits
    integer TOTAL_TEST_CASES        = 0;
    integer TOTAL_PASSED_TEST_CASES = 0;
    integer TOTAL_FAILED_TEST_CASES = 0;
    integer VCD_MAX_CASES           = 32;
    integer ERROR_MAX_CASES         = 32;

    integer i, j;

    // Free-running clock (10 time-unit period)
    initial begin
        CLK = 1'b0;
        forever #5 CLK = ~CLK;
    end

    // VCD — only Inputs -> Outputs -> Expected -> mismatch; start at #0
    initial begin
        $dumpfile("tb_dff_sync_reset.vcd");
        $dumpvars(0,
            tb_dff_sync_reset.CLK,
            tb_dff_sync_reset.RST,
            tb_dff_sync_reset.D,
            tb_dff_sync_reset.Q,
            tb_dff_sync_reset.expected_Q,
            tb_dff_sync_reset.mismatch
        );
        $dumpon;
    end

    // Drive inputs on negedge, check after next posedge
    task drive_and_check;
        input [127:0] name;
        input rst_v, d_v;
    begin
        @(negedge CLK);
        RST = rst_v;
        D   = d_v;
        @(posedge CLK); #1;

        TOTAL_TEST_CASES = TOTAL_TEST_CASES + 1;
        if (!mismatch) begin
            TOTAL_PASSED_TEST_CASES = TOTAL_PASSED_TEST_CASES + 1;
        end else begin
            TOTAL_FAILED_TEST_CASES = TOTAL_FAILED_TEST_CASES + 1;
            if (TOTAL_FAILED_TEST_CASES <= ERROR_MAX_CASES)
                $display("[FAIL] %0s  RST=%b D=%b  Q=%b expected_Q=%b  t=%0t",
                         name, RST, D, Q, expected_Q, $time);
        end
        if (TOTAL_TEST_CASES == VCD_MAX_CASES) $dumpoff;
    end
    endtask

    // Optional between-edge change (no check; Q must hold)
    task change_between_edges;
        input rst_v, d_v;
    begin
        @(negedge CLK);
        RST = rst_v;
        D   = d_v;
    end
    endtask

    initial begin
        // Start with unknown expected like real silicon; first edge defines it
        RST = 1'b0; D = 1'b0; expected_Q = 1'bx;
        @(posedge CLK); #1;

        // Directed sequences
        drive_and_check("reset_clears" , 1'b1, 1'b1);
        drive_and_check("reset_still"  , 1'b1, 1'b0);
        drive_and_check("capture_one"  , 1'b0, 1'b1);
        drive_and_check("capture_zero" , 1'b0, 1'b0);

        // Show that between-edge changes don't affect until next edge
        change_between_edges(1'b0, 1'b1);
        drive_and_check("capture_after_change", 1'b0, 1'b1);

        // Exhaustive two-step edges over {RST,D}
        for (i=0; i<4; i=i+1) begin
            drive_and_check("prev_vec", i[1], i[0]);
            for (j=0; j<4; j=j+1)
                drive_and_check("next_vec", j[1], j[0]);
        end

        // Random stress
        for (i=0; i<10; i=i+1)
            drive_and_check("rand", $random, $random);

        // Summary
        $display("TOTAL_TEST_CASES=%0d",        TOTAL_TEST_CASES);
        $display("TOTAL_PASSED_TEST_CASES=%0d", TOTAL_PASSED_TEST_CASES);
        $display("TOTAL_FAILED_TEST_CASES=%0d", TOTAL_FAILED_TEST_CASES);
        $display("ALL_TEST_CASES_PASSED=%s",    (TOTAL_FAILED_TEST_CASES==0) ? "true" : "false");

        #2 $finish;
    end
endmodule